手机上的ToF镜头到底是前途未卜还是一片光明?
随着技术的不断成熟,手机厂商的“灵感”也越来越枯竭,当处理器、屏幕等硬件都逐渐趋于同质化后,手机厂商们又把眼光放在了手机拍照领域,希望自己能通过一些特殊的点搞出差异化,从而吸引用户。
而提到手机影像发展,最让小雷印象深刻的莫过于一颗仅有200万像素的特殊镜头。当然,它既不是我们印象中的战术黑白镜头或是微距镜头,手机厂商把它称之为ToF镜头,不过它并不会参与到手机成像环节中。
说起iPhone和安卓手机之前的区别,除了系统和处理器之外,其实还有一个值得注意的点,那就是你在iPhone Pro系列(特指iPhone 12 Pro系列及 ihone 13 Pro系列)上能看到一颗看似是镜头实际上被称作是LiDA雷达的“黑洞”。实际上iPhone的这颗LiDA雷达传感器就是安卓前两年已经"玩烂"的TOF传感器。
ToF镜头在手机行业算是一个坐过山车的配置,2018年时有一个小高峰,当时的手机大厂,如三星、华为、OPPO、vivo、小米、LG等也在中高端机型中配置了ToF镜头,但近两年我们几乎难以再见到它的身影。
在安卓手机阵营的带动下,曾经被市场“热炒”的ToF似乎正面临着尴尬的境地。消费者不在意,手机厂商不愿意继续研发,种种原因都导致了ToF镜头在短短两年时间内从顶峰跌至低谷,这到底是因为ToF镜头自身的问题还是市场的外部因素?
所谓的ToF不过是一个噱头?
首先我们需要明白,ToF只是Time-of-Flight(飞行时间)的缩写,它的原理是将一组人眼看不到的红外光(激光脉冲)向外发射,遇到物体后反射,反射到摄像头结束,计算从发射到反射回摄像头的时间差或相位差,并将数据收集起来,形成一组距离深度数据,从而得到一个立体的3D模型的成像技术。
而将这项技术运用到手机上时,它的作用就变成了辅助手机增加拍照对焦速度,优化大光圈背景虚化功能,通过计算光线从光源到被拍摄物体的时间,以此计算出被拍摄物体的深度信息。
2018年,OPPO R17 Pro成为首款搭载ToF 3D镜头的机型,随后发布的vivo NEX、荣耀V20和华为P30都表示自己搭载了ToF技术,能够实现3D测距、3D拍摄等功能,根据相关资料显示,2019年TOF机型出货量为77.6百万台, 其占比越来越高。
此外ToF镜头对环境的要求并没有那么大,几乎可以在任何环境下运行;也没有那么大的数据偏差,ToF镜头可以把景深信息直接传送给手机,不用二需要次计算,所以它要比传统的相机更有优势。最为重要的是ToF镜头比较容易量产,所以成本比较低,而且可塑性极强,你不用操心它放在什么位置。
种种优点使得ToF镜头一时间成为手机市场中的宠儿,当时几乎所有的旗舰手机都会配备这么一颗ToF镜头。可是就当市场都以为这可能就是未来手机影像的发展方向之一时,搭载ToF镜头的手机又突然消失得无影无踪。
问其原因,其实很简单,ToF技术缺乏刚需应用支持。在手机的发展史上,新软件功能的开发通常和新的元器件的搭载是相辅相成,互相促进的。就好像当年14G应用和4G手机一样,如果没有大范围的4G手机和套餐的普及,就不会有抖音为代表的短视频,王者荣耀为代表的团队竞技游戏,钉钉为代表的多人在线视频会议以及远程教育等应用的崛起。而这些应用的出现反过来又促进了4G网络的进一步发展。但就目前来看,根本没有一款现象级应用能够支撑ToF技术的进步。
比如说,ToF可以用来扫描物体的形状,然后自动建立一个3D模型。但问题就在于,大多数消费者家中并不会有3D打印机,就算建出了模型也没有什么实际作用。
又比如说,它可以用于物体测距,能把手机变成AR“尺子”来使用。但问题在于,这种测距功能看似科幻,但精确度极易受光线、物体表面纹理、测量角度等等因素的影响,所以真要用起来,可能远不如卷尺来得更方便和精确。
再比如说,它可以用于手机影像功能的辅助对焦,但实际上ToF的测量速度其实并没有想象中那么快,无论是精度还是速度都远不及传统的激光传感器。以至于去年年初一些配备了ToF的机型,在去年下半年和今年上半年的后续产品中,又把ToF去掉,换成了激光对焦模组。
种种“鸡肋”的功能让用户难以再提起兴趣,因此TOF技术似乎失去了切入点和落脚点。
当然,ToF镜头模组功耗和发热量大、分辨率较低、成本较高等缺陷也使得手机厂商不得不放弃这么一个“前途可期”的硬件,毕竟对于消费者而言,成熟的技术才能引起他们的注意。
根据国外媒体GSMarena的投票结果显示,凑数镜头成了今年手机中最令人深恶痛绝的设计,所谓的ToF镜头、AI传感器和微距大部分在手机成像中起到的作用微乎其微,即使不搭载这些凑数镜头,手机的影像系统也能保证正常工作,厂商为了噱头无所不用其极,成为了这个行业中的普遍行为。
谁能拯救“鸡肋”的ToF?
虽然ToF短时间内在手机上没有用武之地,但这就能证明它真的没有用武之地吗、答案显然是否定的,从前文中可以看出ToF技术最大的优点在于测距,它的深度计算精度并不会随距离改变而变化,而且能够保持在厘米级别,这使得它在包含大范围运动的场景下适用度非常高。
因此,近两年爆火的扫地机器人就成了市场最看好的落地场景,但是根据市场调研,买完扫地机的消费者的评价并不高,主要原因有2个,一是根本扫不干净,二是机器人太傻,不知道规划路径,还经常被卡住。
针对这些痛点,不少扫地机器人厂商纷纷将扫地机器人上的单线机械扫描式激光雷达替换为2-3个广角TOF深感相机,在成本相当的情况下,就能让扫地机器人的体积能变得更加轻薄、高效,更加受到消费者的喜爱。
另外像什么自动驾驶中行车环境的测距、感知,工业领域人机协同安全距离的监测、物流行业的体积、重量计算,机器人的导航等等都是ToF技术目前能够真正发挥作用的地方。
不过话说回来,ToF技术想要进一步发展,成为未来的主流技术之一,目前最大的问题仍是成本。我们将ToF镜头的产业链进行拆解,可详细分为:上游为红外传感器、红外光源、光学组件、光学镜头以及图像传感器(CCD和CMOS图像传感器),中游为传感器模组、摄像头模组、光源代工、光源检测以及图像算法,下游即为终端和应用厂商。
其中图像传感器是ToF传感器的核心组件,此前CCD图像传感器一直是ToF的必备组件,但是我们知道CCD图像传感器一直以来都是用在医疗、航空航天等高端领域,用在ToF十分不利于普及。
另外解析之前搭载ToF镜头的手机,不难发现其供应商无一例外是外国厂商,国内厂商目前差距较大,仍需不断追赶。
早在2019年时,小米副总裁卢伟冰曾表示TOF镜头只是个噱头,目前并没有太大的实际效用。而荣耀发言人“荣耀老熊”却认为,未来TOF能够突破性的将现实世界物体、人像、空间虚拟化,必将是5G移动互联网最重要的应用场景之一。但就目前的情况来看,ToF镜头并没有像大家想象中那样成为主流配置,究其原因还是过于鸡肋,没有足够实用的软件去支撑。
不过小雷还是认为,ToF技术随着5G网络的进一步覆盖和相关技术的进一步下降,在上述提到的智能家居、自动驾驶、AR/VR游戏等领域还是有不小的发展空间。至于手机,可能还得需要一个“爆款”应用才能让它被消费者和市场所重视起来。
“花里胡哨”可站不住脚
除了ToF镜头之外,简单回顾近两年的手机上那些昙花一些的功能设计,“升降式全面屏设计”必然榜上有名。确实,升降式设计能够提升手机的正面观感,也符合部分有强迫症的用户需求,但它与ToF镜头有着异曲同工之妙,为了实现这一设计,当时的手机不得不舍去太多更加实用的功能(例如防水、重量以及电池),这并不利于手机的发展,最终的结果大家都也都清楚,当下已经没有手机厂商会再去使用曾被“部分消费者”喜爱的升降式全面屏设计。
另外像什么“双屏”、“高像素”、“高倍数变焦”等等等等,这些都是近两年不少厂商曾大力推崇过的技术,然而随着市场的检验,这些看似实用实则花里胡哨的功能早已被抛弃。
从这些已被遗弃的功能中我们可以看出,如今的消费者早已不像之前那样容易被一些所谓的“宣传术语”给迷惑。手机技术在进步,我们的判断能力也逐渐在进步,单纯的噱头功能已经不再灵验,想要让消费者心甘情愿地为产品买单,还得看那些已经被消费者所认可的功能。当然,小雷也不是反对手机厂商们去创新,毕竟没有创新的话,手机发展早就停滞不前了,只是这些所谓的新功能,必须要建立在经常使用或足够实用的情况之上。
在未来的市场上将会如何演变,都只是各大厂商做出的产品探索。现阶段手机厂商想破头皮研发出的各种花里胡哨功能,无非也只是厂商对于市场需求,以及自己的产品发展方向,和其中的投入效益比等方面的综合反应。智能手机发展至如今的形态,似乎水到渠成,细数一下还是发现我们走过不少弯路,但这都是手机厂商们必然经历的阶段,我们也只能等待手机厂商们的下一次“灵感爆发”。
一文看懂TOF
来源:内容来自「国盛证券」,谢谢。
3D sensing是智能手机创新的趋势之一,当前正加速向中低端手机渗透。目前实现3D sensing共有三种技术,分别为双目立体成像、结构光和ToF,目前已经比较成熟的方案是结构光和TOF。其中结构光方案最为成熟,已经大规模应用于工业3D视觉,TOF则凭借自身优势成为在移动端较被看好的方案。
3D结构光最早应用于苹果旗舰iPhone X,结构光原理为通过近红外激光器向物体投射具有一定结构特征的光线,再由专门的红外摄像头进行采集获取物体的三维结构,再通过运算对信息进行深入处理成像。该技术目前共有编码结构光和散斑结构光两种实现类别。结构光技术仅需一次成像就可得到深度信息,具备低能耗、高成像分辨率的优势,能够在安全性上实现较高保证,因此被广泛应用于人脸识别和人脸支付等场景。但结构光技术识别距离较短,大约在0.2米到1.2米之间,这将其应用局限在了手机前置摄像,主要用于3D人脸识别屏幕解锁、人脸支付及3D建模等。
ToF(Time of Flight)技术是2018年才被应用到手机摄像头的3D成像技术,其通过向目标发射连续的特定波长的红外光线脉冲,再由特定传感器接收待测物体传回的光信号,计算光线往返的飞行时间或相位差,从而获取目标物体的深度信息。ToF镜头主要由发光单元、光学镜片及图像传感器构成。其识别距离可达到0.4米到5米,因此已有品牌,如OPPO、华为等,将其应用于手机后置摄像。ToF技术具备抗干扰性强、FPS刷新率更高的特性,因此在动态场景中能有较好表现。另外ToF技术深度信息计算量小,对应的CPU/ASIC计算量也低,因此对算法的要求更低。但相对于结构光技术,ToF技术的缺点在于其3D成像精度和深度图分辨率相对较低,功耗较高。
双目立体成像原理较为简单,即利用双摄像头拍摄物体,再通过三角形原理计算物体距离,合成立体图像。其具有高3D成像分辨率、高精度、高抗强光干扰的优势,同时能保持较低成本水平。但由于需要通过大量的CPU/ASIC演算取得它的深度和幅度信息,其算法极为复杂较难实现,同时该技术易受环境因素干扰,对环境光照强度比较敏感,且比较依赖图像本身的特征,因而拍摄暗光场景时表现差。由于以上原因,双目立体成像技术在手机上较少应用。
结构光技术和ToF各有优势,在移动端的应用上具有互补的特性,但不可否认的是,ToF的多场景应用呈现出了更为广阔的发展前景。iPhone X对3D结构光的应用带动了这项技术的发展和渗透,目前相较于ToF,结构光技术在应用上更为成熟,出货量上明显占优。而且结构光的扫描效果更为真实,具备更强的3D还原能力。但遗憾的是,作用距离的劣势限制了其应用。ToF技术弥补了距离上的缺陷,由于能够支持更远的作用距离,ToF技术可以被应用于包含3D人脸识别、3D建模以及手势识别、体感游戏、AR/VR在内的更多场景中,从而为智能手机更娱乐性和实用性的体验。此外,相比结构光技术,ToF的模组复杂度低,堆叠简单,可以做到非常小巧且坚固耐用,在屏占比不断提高的外观趋势下,更得到手机厂商的青睐。
ToF让3D建模“飞向寻常百姓家”
我们生活在一个三维的空间,对周围物体及环境的大部分经验来自于对深度信息的感知。对于人们来说,立体化的3D视觉比2D图片的形式要生动、沉浸许多,这也是人们所追求的直观体验。为解决这一需求痛点,3D建模技术应运而生并迅速发展。3D建模即通过相机等设备对物体进行采集照片,获取周围环境物体三维尺寸和深度信息,经计算机进行图形图像处理以及三维计算,从而全自动生成被拍摄物体的三维模型的技术。曾经主流的3D建模实现都十分昂贵,而当3D镜头技术和传统的镜头结合起来,意味着在移动端即可实现3D建模,ToF技术正推动着3D建模应用 “飞入寻常百姓家”。
随着体感交互、3D识别与感知、环境感知以及AR地图构建等技术与应用的发展,市场对 3D视觉与识别技术的兴趣日益浓厚,ToF的使用进一步丰富了3D建模技术的应用场景。
拍照虚化。ToF具备更好的景深采集功能,加入智能手机后摄模组后,能够实现快速、远距离获取更高精度的景深信息,从而完成较结构光更大范围的3D建模,而且由于自带红外光源,其在暗光环境下获得的景深信息同样准确。因此,有TOF摄像头参与的成像在虚化效果上会更加真实,富有层次,从而能够带来更好人像模式体验。
体感游戏。通过TOF技术能够采集到被拍摄人的身体深度信息,捕捉和采集身体的动作,进行手势判定,控制预制的3D建模人偶的形象和动作,实现真人和3D虚拟形象跟随,,用身体、动作和手势做游戏交互。
ToF助力消费级AR普及。ToF技术的应用亦是AR、VR时代的催化剂。考虑到ToF的两个独特的优点——作用距离长、刷新率高,存在远距离3D 测距需求的AR/VR是最能体现 TOF 优势的功能之一。3D摄像头技术提供的手势识别功能将成为未来AR/VR领域的核心交互手段。目前各大厂商推出的VR设备大都需要控制器,游戏控制器的优势在于控制反馈及时、组合状态多。
3D摄像头技术提供的手势识别功能将成为未来AR/VR领域的核心交互手段。 目前各大厂商推出的VR设备大都需要控制器,游戏控制器的优势在于控制反馈及时、组合状态多。以HoloLens为例,就拥有一组四个环境感知摄像头和一个深度摄像头,环境感知摄像头用于人脑追踪,深度摄像头用于辅助手势识别并进行环境的三维重构。
HoloLens相比以往任何设备的强大之处,在于其能够实现对现实世界的深度感知并进行三维建模。HoloLens 拥有拥有一组四个环境感知摄像头和一个深度摄像头,环境摄像头获得周围图像RBG信息,深度摄像头则利用TOF技术获得视觉空间深度图(Depth Map)并以此重建三维场景、实现手势识别。
下一波创新性革命,AR应用前景巨大。外观系列创新之后,下一波移动终端创新将围绕AR进行革命性创新。光学领域TOF有望接力结构光,从生物感知到虚拟现实,从人脸识别到3D建模,带来产业端升级和用户体验优化,前置人脸识别+后置虚拟现实功能可能成为手机的下一个形态。手机实现虚拟现实同样需要使用3D摄像头模组,进一步推动光学产业链的升级。
下一波创新性革命,TOF市场空间巨大
下一波移动终端创新将围绕AR进行革命性创新。随着增强现实内容市场的蓬勃发展,内容厂商不断推动AR/VR开发平台的发展,必然会推动TOF产业的发展。TOF有望接力结构光,从生物感知到虚拟现实,从人脸识别到3D建模,带来产业端升级和用户体验优化,前置人脸识别+后置虚拟现实功能可能成为手机的下一个形态。伴随AR/VR的发展,ToF有望成为智能手机摄像头的下一个风口。
我们看到2019年3D感测手机大多集中在高端机等旗舰机型,结构光以苹果为代表,自iPhoneX后的机型都已经搭载结构光功能,而华为搭载TOF的机型数量最多。根据Yole的预测数据也显示,全球3D成像和传感器的市场规模在2016–2022年的CAGR为38%,2017年市场规模18.3亿美元,2022年将超过90亿美元。其中,消费电子是增速最快的应用场,2016–2022年的CAGR高达160%,到2022年消费电子市场规模将超过60亿美元。
从出货量上来看,我们预测智能手机3D感测需求将从2017年的4000万部增加至2019年的2亿部以上,其中2019年的ToF机型还主要集中在几款高端旗舰机,从2020年开始TOF的出货量将进一步爆发,在整体3D感应中占比有望达到40%。
我们预测2019/2020年TOF的出货量为7760万/2.1亿部,同比大幅增长747%/166%。
BOM比较:TOF或更具成本优势
我们预计ToF和结构光的BOM成本大约为12~15美元和20美元,相比之下TOF更具有成本优势。以iPhone X为例,结构光技术的解决方案包括三个子模块(点投影仪,近红外摄像机和泛光照明器+接近传感器),而ToF解决方案则将三个集成到一个模块中,可以将包装成本降低。
我们预计在这个TOF模组中,芯片的成本仍占主要的部分,大约占到整体BOM的28%~30%。
深度解析3D Sensing摄像头产业链
目前TOF或结构光的3D感知技术均为主动感知,因此3D摄像头产业链与传统摄像头产业链相比主要新增加红外光源、红外传感器和光学组件等部分。通过对已经上市的主流3D摄像头产品进行拆解分析,3D摄像头产业链可以被分为:
1、上游:红外传感器、红外光源、光学组件、光学镜头以及CMOS图像传感器;
2、中游:传感器模组、摄像头模组、光源代工、光源检测以及图像算法;
3、下游:终端厂商以及应用。
TOF和结构光二者虽然原理不同,但其所需要的核心部件基本相同,TOF中的核心部件包括发射端的VCSEL光源、Diffuser等,接收端的镜头、窄带滤光片、近红外CMOS等。
1.VCSEL:垂直发射光源,国内厂商逐步突破
VCSEL(Vertical-Cavity Surface-Emitting Laser,垂直腔表面发射激光器)是一种垂直于衬底面射出激光的半导体激光器。 由上下两个DBR反射镜和有源区这三部分组成。VCSEL单价贵于LED、LD,可通过大规模量产降低成本。 VCSEL的垂直结构更适合使用晶圆级制造和封测,并且规模量产之后具有成本优势。
VCSEL具有效率高、功耗低、传输速率快、制造成本低等优良特点,逐渐替代了LED成为主流选择。 发射光源包括两种,一种是边发射的(如LD),一种是垂直的(如VCSEL),前者一般波长较长,用于信息传输;后者可以通过压缩垂直腔体的容积用于体积较小的应用中,更适合作为3D感知的发光源。早期3D感知经常使用LED作为光源,但红外LED的响应速度较差,扫描结果不够精准。VCSEL在3D感知领域性能优于LED,逐渐替代了LED成为主流选择。
VCSEL主要进入壁垒在于资质认证和量产能力,国内厂商逐步突破。 目前VCSEL领域主要厂商为光通讯芯片领域的国外大厂,包括Lumentum、Finisar、II-VI、Philips Photonics等,其中Lumentum是VCSEL全球领先的供应商,供应国际大客户新机型3D感知模组的激光源。
TOF 的 VCSEL 并不像结构光那样对编码图案有一定要求,常规的规则排列即可,因此可供选择的 VCSEL 供应商也会更多。未来VCSEL需求量激增,但VCSEL产业链过去被美国和日本少数厂商把控。去年苹果推出iPhone X后,VCSEL需求持续加大,因此留给国内VCSEL公司很大的成长空间和市场空间。国内的供应商如纵慧、睿熙、华芯等均取得了不小的突破。
2. Diffuser:将光调制成均匀的面光源
Diffuser的主要功能为显示器提供一个均匀的面光源,材料需选择光透过率高的材料,将化学颗粒作为散射粒子,光线在经过扩散层时会不断的穿过,在此同时光线就会发生许多折射、反射与散射的现象,进而形成光学扩散的效果。未来手机3D成像的Diffuser将会更加复杂化与定制化,应用场景更加细分,同时随着TOF的爆发,产品设计也将持续创新,规模优势日益凸显。
3.窄带滤光片:只允许通过特定波长
窄带滤光片是带通滤光片的一种,是光谱特性曲线透射带两侧邻接截止带的滤光片,即在特定的波段允许光信号通过,在其他波段则阻止光信号,窄带滤光片的通带较窄,一般小于中心波长的5%。目前全球主要的窄带滤光片主要有两家,美国的VIAVI和中国的水晶光电。
窄带滤光片在3D传感领域需求大,是3D视觉系统中红外光接受模组的组成部分,位于镜头和近红外图像传感器之间。在3D视觉系统中,红外光源是实现深度测量的关键,红外光源包括红外LED和激光器(主要是VCSEL(红外激光发射器),在运作过程中,若VCSEL发射940nm波长的近红外光,为了接收端的图像传感器只接收到这一波长近红外光,需要通过窄带滤光片,将其余的环境光剔除。
水晶光电是国内光学精密薄膜镀膜龙头,在窄带滤光片上具有技术和先发优势。目前 大客户的窄带滤光片方案是以水晶与VIAVI合作的方式供应。公司的强项在于镀膜工艺,预计新的竞争对手需要较长的时间才能切入,护城河较高。水晶有望抓住下游3D sensing需求的放量,凭借技术和先发优势将充分受益。
4.3D图像处理芯片:难度较高
3D成像所需的图像处理芯片的技术难度更高,与一般的图像处理芯片有所区别,通过算法将IR接收端采集的空间信息和镜头成像端采集的色彩信息相结合,进而生成三维图像。由于芯片的技术壁垒较高,目前供应商仅为几个芯片巨头,包括STM、TI、NXP等。
5.成像镜头端:产业链较为成熟
手机摄像头对应的产业链企业包括图像传感器制造商、模组封装厂商、镜头厂商、马达供应商、滤光片供应商等。由于行业技术壁垒和集中度高,产业链的龙头多为日本、韩国、中国台湾所垄断,大陆的厂商主要集中在红外滤光片和镜头模组封装上,包括舜宇光学、欧菲科技、水晶光电、立讯精密(立景)、丘钛科技等。
在CIS市场份额上面,索尼一家独大,市场份额高达42%,三星居第二位,市场份额达到了18%,豪威排第三,市场份额为12%,随着手机、汽车、工业等下游应用领域对CIS的需求不断增加,市场空间有望进一步扩大。Yole Development数据显示,2016年CMOS图像传感器市场规模达到115亿美元,相较2015年同比增长约13%,预计2016至2022年全球CMOS图像传感器市场复合年均增长率将保持在10.50%左右,2022年将达到约210亿美元。出货量方面,2017年全球CIS出货量超40亿颗,预计2021年全球出货量将达70亿颗。
在摄像头模组上面,根据TSR的数据2016和2017年欧菲科技的市场份额为9%和13.3%,舜宇光学的市占率为7.9%和9.5%,丘钛科技的市占率为5.3%和6.5%。2017年,全球TOP摄像头模组厂商占据了全球超过50%的市场份额,比2016年增长了13个百分点,集中化趋势愈加明显。一方面,产业集中度不断提高,另外一方面,以光学领域的双摄、3D摄像头和柔性显示为代表的功能性和差异化的创新层出不穷,持续利好自主创新能力强和具有产业整合及规模优势的龙头企业。
2018年,品牌集中度进一步加剧,全球TOP摄像头模组厂商与二、三线摄像头模组的出货量呈现两极分化,通常情况下,全球TOP摄像头模组厂商的月出货量可达35KK,而二、三线摄像头模组厂商最高出货量不超过15KK。前三大模组厂商也不断扩产,以满足下游需求。
在镜头市场,中国台湾的大立光占有绝对的龙头地位,在iPhone中供应了超过50%的镜头份额。在中国手机厂商方面,舜宇光学镜头的市占率在不断增加。目前大立光的年产能约为1.5亿,遥遥领先于其他厂商。
免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。
今天是《半导体行业观察》为您分享的第2131期内容,欢迎关注。
半导体行业观察
『半导体第一垂直媒体 』
实时 专业 原创 深度
相关问答
tof 是怎样的一款技术呢?要深入介绍ToF镜头,不得不说下超感光四摄的HUAWEIP30Pro了和前段时间发布的荣耀V20。P30P后置4000万像素超感光镜头、2000万像素超广角镜头、800万像素潜望式...
tof镜头 概念股有哪些?-股票知识问答-我爱卡[回答]tof镜头概念股主要有凤凰光学(600071)、福光股份(688010)、福晶科技(002222)、矩子科技(300802)、水晶光电(002273)、欧菲光(002456)、韦尔股份(603...
tof镜头 有多少像素?tof镜头200万像素。TOF镜头的优点:1.更加丰富的景深信息,让照片更有层次感;2.更安全的3D人脸识别,并支持人脸支付;3.可以让相机支持一些简单的3D玩法;4...
to摄像头是什么协议?TOF作为人脸识别。虽然TOF镜头和苹果的3D结构光类似,但工作距离比结构光要远很多,最远能到达10米。在工作的时候,TOF镜头会补抓光遇到物体的时候反射回来相应...
让小米和华为争论不休的 TOF镜头 ,究竟背负着怎样的使命?TOF镜头,大概的作用,就是建立真实物体的3D模型吧,有了这个立体深度的检测功能,可以实现很多功能。无论现在有什么争论,无论现在用不用,将来这个TOF镜头,...T...
3d tof镜头 有啥用?能利用激光发射识别3d立体画面,可用于3d扫描也能面部识别和辅助拍摄能利用激光发射识别3d立体画面,可用于3d扫描也能面部识别和辅助拍摄
TOF 和结构光有区别吗?哪个更好?在悟空问答上的580个问题,只写接地气的科技内容,欢迎关注。结构光技术和TOF镜头技术,同属于3D结构光技术的应用,其实两者的核心,都是为了识别场景中物体的3...3...
三星 tof镜头 有什么用?ToF深度感知摄像头作为一种新型立体视觉传感器和三维深度感知模组,可实时获取高分辨率、高精度、低时延的深度Depth和RGB视频流。还可实时生成3D图像,用于三维...
tof镜头 什么时候会用?Timeofflight是TOF镜头的全称,可以直译为飞行时间。所谓的飞行时间法3D成像,其实就是我们上面说过的那个意思。TOF镜头放在手机后面主要是为了收集一些景深...
tof镜头 什么时候启用?ToF镜头是原深感镜头,它专门负责3D识别。与3D结构光不同,TOF技术通过调制光发射器发的高频光线,碰到物体以后会反射回来,接收器会捕捉来回的时间,通过计算能...